6-60
k Kansverdeling (Continu)
Kansverdelings-
functies
Betrouwbaarheiddichtheid
Cumulatieve Verdeling
Normale
verdelingskromme
πσ
2
p(x) =
1
e
–
2
2
σ
(x – μ)
2
μ
(
> 0)
σ
p = p(x)dx
Upper
Lower
∫
Student-
t
kansverdeling
p(x) =
×
Γ
Γ
× df
π
–
df+1
2
2
df
2
df + 1
df
x
2
1 +
χ
2
-
kansverdeling
p(x) =
×
(x 0)
Γ
1
2
df
df
2
×
x
2
1
df
2
–1
x
2
–
× e
F -
kansverdeling
ndf
2
x
ddf
ndf
ndf
2
–1
ddf
ndf × x
1 +
ndf + ddf
2
p(x) =
–
Γ
2
ndf + ddf
Γ
2
ndf
× Γ
2
ddf
(x 0)
Kansverdelings-
functies
Inverse Cumulatieve Verdeling
Normale
verdelingskromme
p = p(x)dx
Upper
–∞
∫
p = p(x)dx
Lower
∞
∫
p = p(x)dx
Upper
Lower
∫
tail = Left tail = Right tail = Central
Student-
t
kansverdeling
p = p(x)dx
Lower
∞
∫
χ
2
-
kansverdeling
F -
kansverdeling
Comments to this Manuals